高速气体天时燃烧器的研制
高速气体天时燃烧器是现代燃烧技术在工业燃烧器产业的体现,其出口处高温燃烧产物的喷射速度可达100 m/s~300 m/s,具有节能、高效、火焰动量可控等技术优势,在发达国家已经广泛地应用在航空、钢铁、化工、轻工等行业的各种加热炉上。我国在80年代引进此项技术,并有一些仿制的产品投入市场,但是由于其成本高、耐火材料内衬易坏、使用寿命短,影响了推广。
高速气体燃烧器是一种把燃料的化学能转换成燃烧产物的势能和动能的装置,液体火箭发动机是一种把推进剂的化学能转换成燃烧产物的热能和动能的装置,两者在工作原理上有相似之处。利用在液体火箭发动机研制方面的丰富经验,开发研制了一种全金属结构,采用再生冷却的高性能的高速气体燃烧器。
1.1 高速气体燃烧器的技术特点
a) 精确组织燃烧,燃烧效率99.9%;b) 宽运行工况:热负荷调节比1∶20, 空气系数0.5~10;c) 采用分级燃烧,有害气体(NOx)排放符合国家环保标准;d) 具有烟气引射回流功能,可以将废烟气从炉后引回重新投入炉内;e) 全金属结构,连续使用寿命3年。
1.2 高速燃烧器提高换热效率的机理
在传统的工业炉设计中,燃烧器的火焰速度大约为每秒几米,当燃烧产物温度在600 °C~800 °C时,炉内对流换热与辐射换热各占50%;在燃烧产物温度为800 ℃以上时,以辐射换热为主;在燃烧产物温度达到1 400 ℃时,辐射换热是对流换热的10倍,所以大部分炉窑设计中,是以辐射换热为基础。但是在采用高速气体燃烧器后,即使在高温区,炉内被强化的对流换热在综合换热中所占的比重大大提高,具体说明如下。
采用普通燃烧器时,火焰速度低,燃烧产物在被加热物表面的流动为层流,层流的对流换热系数为
h1-Nu*λ/d
式中 努谢尔特数Nu=0.332Pr1/3*Re1/2;Pr为普朗特数;Re为雷诺数;λ为气体的导热系数;d为流道当量直径。
采用高速气体燃烧器, 火焰喷射速度高(100 m/s~300 m/s),被加热体表面流动以紊流为主,紊流附面层局部放热系数为
h2=Nu*λ/d
式中Nu=Pr1/3(0.036Re0.8-836)
设加热炉内腔尺寸为6.45m×2.3m×2.9m,燃烧产物温度为1 790 ℃,被加热体温度为900 ℃。
采用普通燃烧器,燃烧产物流速为5 m/s时,燃烧产物与被加热体表面之间的对流换热比热流为
q1=h1(tg-tw)=2671X4.18kJ/h*m2
采用高速气体燃烧器,燃烧产物流速为150 m/s时,燃烧产物与被加热体表面之间的对流换热比热流为
q2=h2(tg-tw)=10685X4.18kJ/h*m2
q2是q1的4倍。
国外曾就辐射加热炉和高速对流加热炉进行过比较试验,在0 ℃~1 200 ℃的加热过程中,辐射加热炉所需加热时间是高速对流加热炉的6倍,在750 ℃~1 200 ℃的加热过程中,辐射加热炉所需加热时间是高速对流加热炉的10倍。
1980年,国内引进高速气体正英燃烧器在井式加热炉上进行技术改造,原有的辐射加热炉从0 ℃~650 ℃升温需要24 h,而采用了高速气体燃烧器的加热炉从0 ℃~650 ℃升温只需4 h,并且燃料消耗量也由于采用了高速气体燃烧器可以节省25%~30%。
在油田,用高速气体燃烧器改造成三合一加热炉,加热效率提高了1倍,而燃料消耗量节约了20%。
高速气体燃烧器的燃烧产物高速冲进加热炉内,搅动多倍的炉内气体随之掺混,可以大大提高炉内温度均匀度。国外一家工厂用高速气体燃烧器改造加热炉后,炉内温度均匀度可由±15 ℃提高到±2 ℃。国内井式加热炉采用高速气体燃烧器后,炉温均匀度达到±7 ℃。
- 点击:344